(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

S is empty.
Rewrite Strategy: FULL

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:nil:0':ok → mark:nil:0':ok
from :: mark:nil:0':ok → mark:nil:0':ok
mark :: mark:nil:0':ok → mark:nil:0':ok
cons :: mark:nil:0':ok → mark:nil:0':ok → mark:nil:0':ok
s :: mark:nil:0':ok → mark:nil:0':ok
length :: mark:nil:0':ok → mark:nil:0':ok
nil :: mark:nil:0':ok
0' :: mark:nil:0':ok
length1 :: mark:nil:0':ok → mark:nil:0':ok
proper :: mark:nil:0':ok → mark:nil:0':ok
ok :: mark:nil:0':ok → mark:nil:0':ok
top :: mark:nil:0':ok → top
hole_mark:nil:0':ok1_0 :: mark:nil:0':ok
hole_top2_0 :: top
gen_mark:nil:0':ok3_0 :: Nat → mark:nil:0':ok

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
active, cons, from, s, length1, length, proper, top

They will be analysed ascendingly in the following order:
cons < active
from < active
s < active
length1 < active
length < active
active < top
cons < proper
from < proper
s < proper
length1 < proper
length < proper
proper < top

(6) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:nil:0':ok → mark:nil:0':ok
from :: mark:nil:0':ok → mark:nil:0':ok
mark :: mark:nil:0':ok → mark:nil:0':ok
cons :: mark:nil:0':ok → mark:nil:0':ok → mark:nil:0':ok
s :: mark:nil:0':ok → mark:nil:0':ok
length :: mark:nil:0':ok → mark:nil:0':ok
nil :: mark:nil:0':ok
0' :: mark:nil:0':ok
length1 :: mark:nil:0':ok → mark:nil:0':ok
proper :: mark:nil:0':ok → mark:nil:0':ok
ok :: mark:nil:0':ok → mark:nil:0':ok
top :: mark:nil:0':ok → top
hole_mark:nil:0':ok1_0 :: mark:nil:0':ok
hole_top2_0 :: top
gen_mark:nil:0':ok3_0 :: Nat → mark:nil:0':ok

Generator Equations:
gen_mark:nil:0':ok3_0(0) ⇔ nil
gen_mark:nil:0':ok3_0(+(x, 1)) ⇔ mark(gen_mark:nil:0':ok3_0(x))

The following defined symbols remain to be analysed:
cons, active, from, s, length1, length, proper, top

They will be analysed ascendingly in the following order:
cons < active
from < active
s < active
length1 < active
length < active
active < top
cons < proper
from < proper
s < proper
length1 < proper
length < proper
proper < top

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)

Induction Base:
cons(gen_mark:nil:0':ok3_0(+(1, 0)), gen_mark:nil:0':ok3_0(b))

Induction Step:
cons(gen_mark:nil:0':ok3_0(+(1, +(n5_0, 1))), gen_mark:nil:0':ok3_0(b)) →RΩ(1)
mark(cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:nil:0':ok → mark:nil:0':ok
from :: mark:nil:0':ok → mark:nil:0':ok
mark :: mark:nil:0':ok → mark:nil:0':ok
cons :: mark:nil:0':ok → mark:nil:0':ok → mark:nil:0':ok
s :: mark:nil:0':ok → mark:nil:0':ok
length :: mark:nil:0':ok → mark:nil:0':ok
nil :: mark:nil:0':ok
0' :: mark:nil:0':ok
length1 :: mark:nil:0':ok → mark:nil:0':ok
proper :: mark:nil:0':ok → mark:nil:0':ok
ok :: mark:nil:0':ok → mark:nil:0':ok
top :: mark:nil:0':ok → top
hole_mark:nil:0':ok1_0 :: mark:nil:0':ok
hole_top2_0 :: top
gen_mark:nil:0':ok3_0 :: Nat → mark:nil:0':ok

Lemmas:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_mark:nil:0':ok3_0(0) ⇔ nil
gen_mark:nil:0':ok3_0(+(x, 1)) ⇔ mark(gen_mark:nil:0':ok3_0(x))

The following defined symbols remain to be analysed:
from, active, s, length1, length, proper, top

They will be analysed ascendingly in the following order:
from < active
s < active
length1 < active
length < active
active < top
from < proper
s < proper
length1 < proper
length < proper
proper < top

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
from(gen_mark:nil:0':ok3_0(+(1, n830_0))) → *4_0, rt ∈ Ω(n8300)

Induction Base:
from(gen_mark:nil:0':ok3_0(+(1, 0)))

Induction Step:
from(gen_mark:nil:0':ok3_0(+(1, +(n830_0, 1)))) →RΩ(1)
mark(from(gen_mark:nil:0':ok3_0(+(1, n830_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(11) Complex Obligation (BEST)

(12) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:nil:0':ok → mark:nil:0':ok
from :: mark:nil:0':ok → mark:nil:0':ok
mark :: mark:nil:0':ok → mark:nil:0':ok
cons :: mark:nil:0':ok → mark:nil:0':ok → mark:nil:0':ok
s :: mark:nil:0':ok → mark:nil:0':ok
length :: mark:nil:0':ok → mark:nil:0':ok
nil :: mark:nil:0':ok
0' :: mark:nil:0':ok
length1 :: mark:nil:0':ok → mark:nil:0':ok
proper :: mark:nil:0':ok → mark:nil:0':ok
ok :: mark:nil:0':ok → mark:nil:0':ok
top :: mark:nil:0':ok → top
hole_mark:nil:0':ok1_0 :: mark:nil:0':ok
hole_top2_0 :: top
gen_mark:nil:0':ok3_0 :: Nat → mark:nil:0':ok

Lemmas:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:nil:0':ok3_0(+(1, n830_0))) → *4_0, rt ∈ Ω(n8300)

Generator Equations:
gen_mark:nil:0':ok3_0(0) ⇔ nil
gen_mark:nil:0':ok3_0(+(x, 1)) ⇔ mark(gen_mark:nil:0':ok3_0(x))

The following defined symbols remain to be analysed:
s, active, length1, length, proper, top

They will be analysed ascendingly in the following order:
s < active
length1 < active
length < active
active < top
s < proper
length1 < proper
length < proper
proper < top

(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
s(gen_mark:nil:0':ok3_0(+(1, n1319_0))) → *4_0, rt ∈ Ω(n13190)

Induction Base:
s(gen_mark:nil:0':ok3_0(+(1, 0)))

Induction Step:
s(gen_mark:nil:0':ok3_0(+(1, +(n1319_0, 1)))) →RΩ(1)
mark(s(gen_mark:nil:0':ok3_0(+(1, n1319_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(14) Complex Obligation (BEST)

(15) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:nil:0':ok → mark:nil:0':ok
from :: mark:nil:0':ok → mark:nil:0':ok
mark :: mark:nil:0':ok → mark:nil:0':ok
cons :: mark:nil:0':ok → mark:nil:0':ok → mark:nil:0':ok
s :: mark:nil:0':ok → mark:nil:0':ok
length :: mark:nil:0':ok → mark:nil:0':ok
nil :: mark:nil:0':ok
0' :: mark:nil:0':ok
length1 :: mark:nil:0':ok → mark:nil:0':ok
proper :: mark:nil:0':ok → mark:nil:0':ok
ok :: mark:nil:0':ok → mark:nil:0':ok
top :: mark:nil:0':ok → top
hole_mark:nil:0':ok1_0 :: mark:nil:0':ok
hole_top2_0 :: top
gen_mark:nil:0':ok3_0 :: Nat → mark:nil:0':ok

Lemmas:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:nil:0':ok3_0(+(1, n830_0))) → *4_0, rt ∈ Ω(n8300)
s(gen_mark:nil:0':ok3_0(+(1, n1319_0))) → *4_0, rt ∈ Ω(n13190)

Generator Equations:
gen_mark:nil:0':ok3_0(0) ⇔ nil
gen_mark:nil:0':ok3_0(+(x, 1)) ⇔ mark(gen_mark:nil:0':ok3_0(x))

The following defined symbols remain to be analysed:
length1, active, length, proper, top

They will be analysed ascendingly in the following order:
length1 < active
length < active
active < top
length1 < proper
length < proper
proper < top

(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol length1.

(17) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:nil:0':ok → mark:nil:0':ok
from :: mark:nil:0':ok → mark:nil:0':ok
mark :: mark:nil:0':ok → mark:nil:0':ok
cons :: mark:nil:0':ok → mark:nil:0':ok → mark:nil:0':ok
s :: mark:nil:0':ok → mark:nil:0':ok
length :: mark:nil:0':ok → mark:nil:0':ok
nil :: mark:nil:0':ok
0' :: mark:nil:0':ok
length1 :: mark:nil:0':ok → mark:nil:0':ok
proper :: mark:nil:0':ok → mark:nil:0':ok
ok :: mark:nil:0':ok → mark:nil:0':ok
top :: mark:nil:0':ok → top
hole_mark:nil:0':ok1_0 :: mark:nil:0':ok
hole_top2_0 :: top
gen_mark:nil:0':ok3_0 :: Nat → mark:nil:0':ok

Lemmas:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:nil:0':ok3_0(+(1, n830_0))) → *4_0, rt ∈ Ω(n8300)
s(gen_mark:nil:0':ok3_0(+(1, n1319_0))) → *4_0, rt ∈ Ω(n13190)

Generator Equations:
gen_mark:nil:0':ok3_0(0) ⇔ nil
gen_mark:nil:0':ok3_0(+(x, 1)) ⇔ mark(gen_mark:nil:0':ok3_0(x))

The following defined symbols remain to be analysed:
length, active, proper, top

They will be analysed ascendingly in the following order:
length < active
active < top
length < proper
proper < top

(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol length.

(19) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:nil:0':ok → mark:nil:0':ok
from :: mark:nil:0':ok → mark:nil:0':ok
mark :: mark:nil:0':ok → mark:nil:0':ok
cons :: mark:nil:0':ok → mark:nil:0':ok → mark:nil:0':ok
s :: mark:nil:0':ok → mark:nil:0':ok
length :: mark:nil:0':ok → mark:nil:0':ok
nil :: mark:nil:0':ok
0' :: mark:nil:0':ok
length1 :: mark:nil:0':ok → mark:nil:0':ok
proper :: mark:nil:0':ok → mark:nil:0':ok
ok :: mark:nil:0':ok → mark:nil:0':ok
top :: mark:nil:0':ok → top
hole_mark:nil:0':ok1_0 :: mark:nil:0':ok
hole_top2_0 :: top
gen_mark:nil:0':ok3_0 :: Nat → mark:nil:0':ok

Lemmas:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:nil:0':ok3_0(+(1, n830_0))) → *4_0, rt ∈ Ω(n8300)
s(gen_mark:nil:0':ok3_0(+(1, n1319_0))) → *4_0, rt ∈ Ω(n13190)

Generator Equations:
gen_mark:nil:0':ok3_0(0) ⇔ nil
gen_mark:nil:0':ok3_0(+(x, 1)) ⇔ mark(gen_mark:nil:0':ok3_0(x))

The following defined symbols remain to be analysed:
active, proper, top

They will be analysed ascendingly in the following order:
active < top
proper < top

(20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol active.

(21) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:nil:0':ok → mark:nil:0':ok
from :: mark:nil:0':ok → mark:nil:0':ok
mark :: mark:nil:0':ok → mark:nil:0':ok
cons :: mark:nil:0':ok → mark:nil:0':ok → mark:nil:0':ok
s :: mark:nil:0':ok → mark:nil:0':ok
length :: mark:nil:0':ok → mark:nil:0':ok
nil :: mark:nil:0':ok
0' :: mark:nil:0':ok
length1 :: mark:nil:0':ok → mark:nil:0':ok
proper :: mark:nil:0':ok → mark:nil:0':ok
ok :: mark:nil:0':ok → mark:nil:0':ok
top :: mark:nil:0':ok → top
hole_mark:nil:0':ok1_0 :: mark:nil:0':ok
hole_top2_0 :: top
gen_mark:nil:0':ok3_0 :: Nat → mark:nil:0':ok

Lemmas:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:nil:0':ok3_0(+(1, n830_0))) → *4_0, rt ∈ Ω(n8300)
s(gen_mark:nil:0':ok3_0(+(1, n1319_0))) → *4_0, rt ∈ Ω(n13190)

Generator Equations:
gen_mark:nil:0':ok3_0(0) ⇔ nil
gen_mark:nil:0':ok3_0(+(x, 1)) ⇔ mark(gen_mark:nil:0':ok3_0(x))

The following defined symbols remain to be analysed:
proper, top

They will be analysed ascendingly in the following order:
proper < top

(22) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol proper.

(23) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:nil:0':ok → mark:nil:0':ok
from :: mark:nil:0':ok → mark:nil:0':ok
mark :: mark:nil:0':ok → mark:nil:0':ok
cons :: mark:nil:0':ok → mark:nil:0':ok → mark:nil:0':ok
s :: mark:nil:0':ok → mark:nil:0':ok
length :: mark:nil:0':ok → mark:nil:0':ok
nil :: mark:nil:0':ok
0' :: mark:nil:0':ok
length1 :: mark:nil:0':ok → mark:nil:0':ok
proper :: mark:nil:0':ok → mark:nil:0':ok
ok :: mark:nil:0':ok → mark:nil:0':ok
top :: mark:nil:0':ok → top
hole_mark:nil:0':ok1_0 :: mark:nil:0':ok
hole_top2_0 :: top
gen_mark:nil:0':ok3_0 :: Nat → mark:nil:0':ok

Lemmas:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:nil:0':ok3_0(+(1, n830_0))) → *4_0, rt ∈ Ω(n8300)
s(gen_mark:nil:0':ok3_0(+(1, n1319_0))) → *4_0, rt ∈ Ω(n13190)

Generator Equations:
gen_mark:nil:0':ok3_0(0) ⇔ nil
gen_mark:nil:0':ok3_0(+(x, 1)) ⇔ mark(gen_mark:nil:0':ok3_0(x))

The following defined symbols remain to be analysed:
top

(24) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol top.

(25) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:nil:0':ok → mark:nil:0':ok
from :: mark:nil:0':ok → mark:nil:0':ok
mark :: mark:nil:0':ok → mark:nil:0':ok
cons :: mark:nil:0':ok → mark:nil:0':ok → mark:nil:0':ok
s :: mark:nil:0':ok → mark:nil:0':ok
length :: mark:nil:0':ok → mark:nil:0':ok
nil :: mark:nil:0':ok
0' :: mark:nil:0':ok
length1 :: mark:nil:0':ok → mark:nil:0':ok
proper :: mark:nil:0':ok → mark:nil:0':ok
ok :: mark:nil:0':ok → mark:nil:0':ok
top :: mark:nil:0':ok → top
hole_mark:nil:0':ok1_0 :: mark:nil:0':ok
hole_top2_0 :: top
gen_mark:nil:0':ok3_0 :: Nat → mark:nil:0':ok

Lemmas:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:nil:0':ok3_0(+(1, n830_0))) → *4_0, rt ∈ Ω(n8300)
s(gen_mark:nil:0':ok3_0(+(1, n1319_0))) → *4_0, rt ∈ Ω(n13190)

Generator Equations:
gen_mark:nil:0':ok3_0(0) ⇔ nil
gen_mark:nil:0':ok3_0(+(x, 1)) ⇔ mark(gen_mark:nil:0':ok3_0(x))

No more defined symbols left to analyse.

(26) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(27) BOUNDS(n^1, INF)

(28) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:nil:0':ok → mark:nil:0':ok
from :: mark:nil:0':ok → mark:nil:0':ok
mark :: mark:nil:0':ok → mark:nil:0':ok
cons :: mark:nil:0':ok → mark:nil:0':ok → mark:nil:0':ok
s :: mark:nil:0':ok → mark:nil:0':ok
length :: mark:nil:0':ok → mark:nil:0':ok
nil :: mark:nil:0':ok
0' :: mark:nil:0':ok
length1 :: mark:nil:0':ok → mark:nil:0':ok
proper :: mark:nil:0':ok → mark:nil:0':ok
ok :: mark:nil:0':ok → mark:nil:0':ok
top :: mark:nil:0':ok → top
hole_mark:nil:0':ok1_0 :: mark:nil:0':ok
hole_top2_0 :: top
gen_mark:nil:0':ok3_0 :: Nat → mark:nil:0':ok

Lemmas:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:nil:0':ok3_0(+(1, n830_0))) → *4_0, rt ∈ Ω(n8300)
s(gen_mark:nil:0':ok3_0(+(1, n1319_0))) → *4_0, rt ∈ Ω(n13190)

Generator Equations:
gen_mark:nil:0':ok3_0(0) ⇔ nil
gen_mark:nil:0':ok3_0(+(x, 1)) ⇔ mark(gen_mark:nil:0':ok3_0(x))

No more defined symbols left to analyse.

(29) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(30) BOUNDS(n^1, INF)

(31) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:nil:0':ok → mark:nil:0':ok
from :: mark:nil:0':ok → mark:nil:0':ok
mark :: mark:nil:0':ok → mark:nil:0':ok
cons :: mark:nil:0':ok → mark:nil:0':ok → mark:nil:0':ok
s :: mark:nil:0':ok → mark:nil:0':ok
length :: mark:nil:0':ok → mark:nil:0':ok
nil :: mark:nil:0':ok
0' :: mark:nil:0':ok
length1 :: mark:nil:0':ok → mark:nil:0':ok
proper :: mark:nil:0':ok → mark:nil:0':ok
ok :: mark:nil:0':ok → mark:nil:0':ok
top :: mark:nil:0':ok → top
hole_mark:nil:0':ok1_0 :: mark:nil:0':ok
hole_top2_0 :: top
gen_mark:nil:0':ok3_0 :: Nat → mark:nil:0':ok

Lemmas:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:nil:0':ok3_0(+(1, n830_0))) → *4_0, rt ∈ Ω(n8300)

Generator Equations:
gen_mark:nil:0':ok3_0(0) ⇔ nil
gen_mark:nil:0':ok3_0(+(x, 1)) ⇔ mark(gen_mark:nil:0':ok3_0(x))

No more defined symbols left to analyse.

(32) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(33) BOUNDS(n^1, INF)

(34) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0')
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0') → ok(0')
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:nil:0':ok → mark:nil:0':ok
from :: mark:nil:0':ok → mark:nil:0':ok
mark :: mark:nil:0':ok → mark:nil:0':ok
cons :: mark:nil:0':ok → mark:nil:0':ok → mark:nil:0':ok
s :: mark:nil:0':ok → mark:nil:0':ok
length :: mark:nil:0':ok → mark:nil:0':ok
nil :: mark:nil:0':ok
0' :: mark:nil:0':ok
length1 :: mark:nil:0':ok → mark:nil:0':ok
proper :: mark:nil:0':ok → mark:nil:0':ok
ok :: mark:nil:0':ok → mark:nil:0':ok
top :: mark:nil:0':ok → top
hole_mark:nil:0':ok1_0 :: mark:nil:0':ok
hole_top2_0 :: top
gen_mark:nil:0':ok3_0 :: Nat → mark:nil:0':ok

Lemmas:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_mark:nil:0':ok3_0(0) ⇔ nil
gen_mark:nil:0':ok3_0(+(x, 1)) ⇔ mark(gen_mark:nil:0':ok3_0(x))

No more defined symbols left to analyse.

(35) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_mark:nil:0':ok3_0(+(1, n5_0)), gen_mark:nil:0':ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(36) BOUNDS(n^1, INF)